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Abstract

In this thesis, we explore the application of the circle method to Waring’s problem,
which asks how many k-th powers are required to represent all sufficiently large
natural numbers. We begin by outlining the historical context of Waring’s conjec-
ture, highlighting the foundational results of Lagrange, Hilbert, Hardy, Littlewood,
and Vinogradov. We then present key technical tools central to the circle method,
namely Weyl’s inequality and Hua’s inequality, which provide powerful estimates for
exponential sums of the form

T (α) :=
∑

1≤x≤P

e(αxk).

Using these bounds, we develop the major- and minor-arc decomposition of the
unit interval in the integral representation of the number of solutions to

xk1 + xk2 + · · ·+ xks = N.

We show that the main contribution to this integral comes from a small set
of “major arcs”, yielding an asymptotic formula for the number of representations
when s ≥ 2k + 1. Central to this formula is the singular series S(N), whose non-
vanishing under the same condition ensures that sufficiently large integers can indeed
be expressed as sums of s k-th powers.

Finally, we discuss refinements concerning absolute convergence of the singular
series. Through this thesis, we highlight how the classical circle method continues to
be a cornerstone in analytic number theory, underpinning deep results and ongoing
developments in the field.



Zusammenfassung

In dieser Arbeit untersuchen wir die Anwendung der Kreismethode auf das Waring-
sche Problem, welches fragt, wie viele k-te Potenzen erforderlich sind, um alle hinrei-
chend großen natürlichen Zahlen darzustellen. Wir beginnen mit einer Darstellung
des historischen Kontexts der Waringschen Vermutung und heben die grundlegenden
Ergebnisse von Lagrange, Hilbert, Hardy, Littlewood und Vinogradov hervor. An-
schließend präsentieren wir zentrale technische Werkzeuge der Kreismethode, nämlich
die Weylsche Ungleichung und die Huasche Ungleichung, welche mächtige Abschät-
zungen für Exponentialsummen der Form

T (α) :=
∑

1≤x≤P

e(αxk)

liefern. Mit Hilfe dieser Schranken entwickeln wir die Zerlegung des Einheitsintervalls
in Haupt- und Nebenbögen in der Integraldarstellung der Anzahl der Lösungen von

xk1 + xk2 + · · ·+ xks = N.

Wir zeigen, dass der Hauptbeitrag zu diesem Integral von einer kleinen Menge von
„Hauptbögen“ herrührt, was eine asymptotische Formel für die Anzahl der Darstel-
lungen ergibt, wenn s ≥ 2k+1. Zentral für diese Formel ist die singuläre Reihe S(N),
deren Nichtverschwinden unter derselben Bedingung sicherstellt, dass hinreichend
große natürliche Zahlen tatsächlich als Summen von s k-ten Potenzen ausgedrückt
werden können.

Schließlich diskutieren wir Verfeinerungen bezüglich der absoluten Konvergenz
der singulären Reihe. Durch diese Arbeit zeigen wir auf, wie die klassische Kreisme-
thode weiterhin ein Grundpfeiler der analytischen Zahlentheorie ist und tiefgreifende
Ergebnisse sowie laufende Entwicklungen in diesem Gebiet untermauert.
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Chapter 1

Introduction

Waring’s problem is a classic question in analytic and additive number theory that
dates back to 1770, when Edward Waring in his “Meditationes algebraicae” made the
following conjecture:

Conjecture 1.1 (Waring, 1770). All natural numbers are the sum of at most 4
squares, 9 cubes, or 19 fourth powers.

This conjecture generalized the earlier result of Lagrange’s four-square theorem
proved in the same year, stating that every integer is a sum of four squares. Waring’s
conjecture remained unproven until Hilbert [Hil09] provided an affirmative answer in
1909. Hilbert’s theorem established that for each k, there exists some finite number s
such that every integer is the sum of at most s k-th powers. Though one should note
that some credits should go to Hurwitz, who showed that if Waring’s conjecture is
true for any exponent k, then it is true for 2k. However, Hilbert’s proof was existential
and did not give explicit values or effective bounds. This set the stage for further
breakthroughs to quantify Waring’s problem, which came with the development of
the circle method in the early 20th century.

The circle method, pioneered by Ramanujan, Hardy, and Littlewood [HR18;
HL20], introduced powerful analytic techniques to tackle additive problems like War-
ing’s conjecture. In a series of papers in the 1920s (the Partitio Numerorum series),
Hardy and Littlewood developed an asymptotic formula for the function R(N), the
number of representations of a sufficiently large integer N as a sum of s k-th pow-
ers. They demonstrated that if the number of summands s is large enough (in fact,
s ≥ s0(k) for some threshold s0(k)), then one can derive an asymptotic expres-
sion for the representation function R(N) of Waring’s problem. A central feature
of their formula was the singular series S(N), an infinite product capturing local
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arithmetic densities. They proved that for sufficiently many variables s, the singular
series converges to a positive constant, thereby guaranteeing that the asymptotic
formula does not degenerate and that all sufficiently large N are representable in
the desired form. Hardy and Littlewood also defined the function G(k) to be the
smallest number of k-th powers required to represent all sufficiently large integers.
They established explicit but rather large bounds on G(k); for instance, they showed
G(k) ≤ (k − 2)2k−1 + 5, which was later improved upon by other mathematicians.

Building on Hardy and Littlewood’s foundation, subsequent mathematicians re-
fined the circle method and dramatically improved the bounds in Waring’s prob-
lem. An important simplification was made by Vinogradov, who in the 1930s re-
formulated the method using finite exponential sums instead of integral contour
integrals, streamlining the analysis. Notably, Vinogradov showed that one can re-
duce the number of k-th power terms substantially; for large k, he proved results
like G(k) ≤ k(3 log k + 11) [Vin47], a striking improvement over the original bound
of Hardy–Littlewood. Around the same time, Hua Luogeng (also known as Hua
Loo-Keng) introduced what is now known as Hua’s inequality [HUA38] in 1938 to
strengthen the control over exponential sums on the minor arcs. Using these new
analytic tools, Hua was able to show that an asymptotic formula holds provided
s ≥ 2k + 1 [HUA38].

More recently, work by Vaughan, Wooley, and others has further refined the
circle method, leading to increasingly tight bounds for G(k). Wooley’s development
of efficient congruencing in the 1990s and 2000s brought the general bound for large
k down to essentially G(k) ≪ k(log k + log log k). Additionally, Bourgain–Demeter–
Guth’s decoupling method [BDG16] has introduced new perspectives on bounding
exponential sums, contributing to further improvements in the application of the
circle method to additive number theory.

1.1 Objectives and Scope of This Thesis
In this thesis, we apply the circle method to Waring’s problem, with the twin goals
of exposition and refinement, following Davenport’s classical treatment [Dav05]. On
one hand, we present a self-contained development of the classical circle method
approach to Waring’s problem, retracing how an asymptotic formula for the repre-
sentation function R(k)

s (N) can be obtained when s is sufficiently large. This includes
a careful treatment of the major arc contribution (which produces the main term
of the formula) and the minor arc estimates (which bound the error term). In
doing so, we introduce and prove two fundamental inequalities: Weyl’s inequality
and Hua’s inequality, which provide upper bounds for exponential sums of the form
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∑
1≤x≤P e(αx

k), where e(x) = exp(2πix), and are crucial for controlling the minor
arc integrals. Using these inequalities, we derive the classical asymptotic formula for
the number of representations of a large integer N as a sum of s k-th powers, under
the condition that s ≥ 2k + 1.

We also examine some refinements of the method, particularly concerning the sin-
gular series S(N). We investigate the convergence and positivity of S(N) in detail,
since the singular series being non-zero is essential to deduce that every sufficiently
large N has at least one such representation.

The questions we address in this thesis can be summarized as follows:

1. How does the circle method yield an asymptotic formula for Waring’s problem?
We analyse the contributions of the major and minor arcs and derive an explicit
asymptotic formula for R(N).

2. What conditions on s ensure that the asymptotic formula holds and that suffi-
ciently large integers are representable? We seek to determine the minimal s
required for success and confirm that s = 2k + 1 suffices.

3. Why is the singular series S(N) central to the formula, and how can we rigor-
ously justify its properties? We examine its role as a product of local densities
and prove that it remains bounded away from zero.

By answering these questions, the thesis provides a comprehensive understanding
of how the circle method works in the context of Waring’s problem. Moreover, this
research highlights the enduring relevance of the circle method as a foundational
tool in analytic number theory, demonstrating how deep analytic techniques yield
concrete number-theoretic results.
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Chapter 2

Weyl and Hua inequalities

Before introducing Weyl’s and Hua’s inequalities, two of the most important tools in
the study of Waring’s problem, as well as in the estimates of the exponential sums,
we would like to motivate why do we need these two inequalities:

In the context of Waring’s problem, we are interested in the following represen-
tation function:

R(N) := #{(x1, . . . , xs) ∈ Ns : 1 ≤ xi ≤ P, xs1 + · · ·+ xks = N}.

The igniting spark in the circle method is the following character orthogonality :∫ 1

0

e(nα) dα =

{
1 if n = 0,

0 if n ∈ Z \ {0}.
(2.1)

This allows to write

R(N) =

∫ 1

0

T (α)se(−Nα) dα, (2.2)

where

e(x) = exp(2πix), T (α) =
∑

1≤x≤P

e(αxk), and P =
⌈
N1/k

⌉
.

As mentioned in the Introduction, the circle method splits the unit circle into
major arcs and minor arcs. In general, it is usually easier to work with the major
arcs, and the difficulty really lies in controlling the minor arcs. Therefore, we will
need these two inequalities to show that T (α) is so small that its contribution cannot
upset the main term coming from the major arcs.

We will prove (2.2) as follows:
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Proposition 2.1. The representation function

R(N) := #{(x1, . . . , xs) ∈ Ns : 1 ≤ xi ≤ P, xs1 + · · ·+ xks = N}

admits the Fourier-additive integral formula

R(N) =

∫ 1

0

T (α)se(−Nα) dα.

Proof. We first construct the following indicator identity: For each s-tuple (x1, . . . , xs) ∈
Ns, put

1xs
1+···+xk

s=N :=

∫ 1

0

e
(
α(xk1 + · · ·+ xks −N)

)
dα,

by the character orthogonality (2.1) with n = xk1 + · · ·+ xks −N .
We then notice

R(N) =
∑

1≤x1,...,xs≤P

1xs
1+···+xk

s=N =

∫ 1

0

∑
1≤x1,...,xs≤P

e
(
α(xk1 + · · ·+ xks −N)

)
dα.

Inside the integral, we notice that we can further factor the inner sum:∑
1≤x1,...,xs≤P

e
(
α(xk1 + · · ·+ xks)

)
=

( ∑
1≤x≤P

e(αxk)

)s

= T (α)s.

Collecting everything we obtain

R(N) =

∫ 1

0

T (α)se(−Nα) dα,

which is the desired identity.

Now we are ready to prove Weyl’s inequality – it was first given by Weyl in 1916
and was given the following explicit form by Hardy and Littlewood in 1920.

Lemma 2.2 (Weyl’s inequality). Let k ≥ 2 and f(x) = αxk + α1x
k−1 + · · ·+ αk be

a degree k real polynomial with leading coefficient α. Assume that α has a rational
approximation a/q, satisfying

gcd(a, q) = 1, q > 0,

∣∣∣∣α− a

q

∣∣∣∣ ≤ 1

q2
.

Then, for all ε > 0, ∣∣∣∣∣∑
x≤P

e(f(x))

∣∣∣∣∣≪k,ε P
1+ε(

1

P
+

1

q
+

q

P k
)1/2

k−1

.
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Note that the trivial bound for the exponential sum isO(P ), and Weyl’s inequality
gives an improvement on this whenever q ∈ [P δ, P k−δ], for some fixed δ > 0. We
cannot obtain any useful information if q is very small, since the sum is of order P ,
at least if f(x) = αxk.

Proof. Without loss of generality, we may assume that q ≤ P k, since otherwise the
right hand side of the claimed inequality would be larger than O(P ), implying that
the inequality holds trivially in this case. The key idea of the proof is squaring and
differencing, which relates the sum to one that involves an average of similar sums
with polynomials of degree one less. In the following, we allow all implied constants
to depend on the degree k of f .

Let P1, P2 be two integers, such that 0 ≤ P2 − P1 ≤ P . We are interested in the
exponential sum

Tk(f) :=
∑

P1<x≤P2

e(f(x)),

where k is the degree of f .
First, we go through the squaring process:

|Tk(f)|2 = Tk(f) · Tk(f)
= [e(f(P1 + 1)) + · · ·+ e(f(P2))] · [e(−f(P1 + 1)) + · · ·+ e(−f(P2))]

=
∑

P1<x1≤P2

∑
P1<x2≤P2

e(f(x2)− f(x1))

= P2 − P1 + 2 · ℜ
∑

P1<x1,x2≤P2
x2>x1

e(f(x2)− f(x1))),

where ℜx refers to the real part of x.
Then, we go through the differencing process: Let x2 = x1 + y. We define the

differencing operator :
∆yf(x1) := f(x1 + y)− f(x1).

We then have 1 ≤ y ≤ P2 − P1 ≤ P and ∆yf(x1) = f(x2)− f(x1).
So we get

|Tk(f)|2 = P2 − P1 + 2 · ℜ
∑

1≤y≤P

∑
x∈I(y)

e(∆yf(x)),

where I(y) is the interval cut out by the inequalities P1 < x ≤ P2 and P1 < x+y ≤ P2.
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Then we have

|Tk(f)|2 ≤ P + 2 · ℜ
∑

1≤y≤P

|Tk−1(∆yf)|

≪ P +
∑

1≤y≤P

|Tk−1(∆yf)| ,

where the interval for Tk−1(∆yf) is contained in the interval (P1, P2].
If we repeat the above argument again, we get

|Tk−1(∆yf)|2 =
∑

P1≤x1≤P2

∑
P1≤x2≤P2

e((∆yf)(x2)− (∆yf)(x1))

= P2 − P1 + 2 · ℜ
∑
y,z≤P

e((∆yf)(x+ z)− (∆yf)(x))

= P2 − P1 + 2 · ℜ
∑
y,z≤P

e(∆y,zf(x))

≪ P +
∑

1≤z≤P

|Tk−2(∆y,zf)| ,

where the interval of summation in Tk−2(∆y,zf) is again contained in the interval
(P1, P2]. By applying the Cauchy–Schwarz inequality, we obtain

|Tk(f)|4 ≪ (P +
∑

1≤y≤P

|Tk−1(∆yf)|)2

= P 2 + (
∑

1≤y≤P

|Tk−1(∆yf)|)2 + P
∑

1≤y≤P

|Tk−1(∆yf)|

≪ P 2 + P
∑

1≤y≤P

|Tk−1(∆yf)|2 (Cauchy–Schwarz inequality)

= P 2 + P
∑

1≤y≤P

(P +
∑

1≤z≤P

|Tk−2(∆y,zf)|) (Substitution)

= P 2 + P 3 + P
∑

1≤y≤P

∑
1≤z≤P

|Tk−2(∆y,zf)|

≪ P 3 + P
∑

1≤y≤P

∑
1≤z≤P

|Tk−2(∆y,zf)| .

By iterating this way, via induction on j, applying the Cauchy–Schwarz inequality
with squaring and differencing, we obtain the following estimate

|Tk(f)|2
j

≪ P 2j−1 + P 2j−j−1
∑

y1,...,yj≤P

∣∣Tk−j(∆y1,...,yjf)
∣∣ , (2.3)
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for any 0 ≤ j < k. Again, the range of summation for x in Tk−j(∆y1,...,yjf) is an
interval contained in (P1, P2].

Now, we may take P1 = 0 and P2 = P in the original sum Tk(f), and observe
that

∆y1,...,yk−1
f(x) = k!αy1 · · · yk−1x+Ψ,

where Ψ is a collection of terms independent of x. Thus, we have

∣∣T1(∆y1,...,yk−1
f)
∣∣ =

∣∣∣∣∣∣
∑

x∈I(y1,...,yk−1)

e(k!αy1 · · · yk−1x)

∣∣∣∣∣∣ ,
where I(y1, . . . , yk−1) is an interval of length at most P .

Notice that we are in fact dealing with a geometric series. We recall the following
estimate ∣∣∣∣∣ ∑

a<x≤b

e(βx)

∣∣∣∣∣ ≤ min

(
b− a,

2

|1− e(β)|

)
,

for any a < b and β ∈ R. We also notice the following estimate

2

|1− e(β)|
=

1

sin(πβ)
≪ 1

∥β∥
,

where ∥β∥ is the distance of β to the nearest integer.
Now after taking j = k − 1 in (2.3) and applying the two estimates above, we

have

|Tk(f)|2
k−1

≪ P 2k−1−1 + P 2k−1−k
∑

1≤y1,...,yk−1≤P

∣∣T1(∆y1,...,yk−1
f)
∣∣

= P 2k−1−1 + P 2k−1−k
∑

1≤y1,...,yk−1≤P

∣∣∣∣∣∣
∑

x∈I(y1,...,yk−1)

e(k!αy1 · · · yk−1x)

∣∣∣∣∣∣
≤ P 2k−1−1 + P 2k−1−k

∑
1≤y1,...,yk−1≤P

min

(
P,

2

|1− e(k!αy1 · · · yk−1)|

)
≪ P 2k−1−1 + P 2k−1−k

∑
1≤y1,...,yk−1≤P

min

(
P,

1

∥k!αy1 · · · yk−1∥

)
.

Let d(m) =
∑

s|m 1 denote the divisor function. For any ε > 0 and positive
integer m, we have the following classical bound

d(m) = Oε(m
ε).
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Therefore, the number of possible integers y1, . . . , yk−1 satisfy m = k!y1 · · · yk−1

is at most
d(m)k−1 = Oε(m

ε),

where the implied constant depends on k and ε. Hence, by redefining the choice of
ε, we obtain

|Tk(f)|2
k−1

≪ε P
2k−1−1 + P 2k−1−k+ε/2

∑
1≤m≤k!Pk−1

min

(
P,

1

∥αm∥

)
.

At last, we still need to estimate the last sum, with the assumption of the rational
approximation a/q: Put α = a/q + θ, where gcd(a, q) = 1, q > 0, and |θ| ≤ q−2, as
in the assumption of Lemma 2.2. We divide the sum into residue classes modulo q,
thus we obtain∑

1≤m≤k!Pk−1

min(P,
1

∥αm∥
) =

∑
b (mod q)

∑
m≤k!Pk−1

m≡b (mod q)

min(P,
1

∥(a/q + θ)m∥
).

If we write m = b+ qm′, we obtain∑
1≤m≤k!Pk−1

min(P,
1

∥αm∥
) =

∑
b (mod q)

∑
m′≤q−1k!Pk−1

min(P,
1

∥ab/q + θqm′ +O(q−1)∥
),

since b |θ| ≤ 1/q.
If we take r = ⌊θq2m′⌋, then we have θqm′ − r/q = O(q−1). If we replace b by

ā(b− r), where ā is the multiplicative inverse of a modulo q, then we get∑
b (mod q)

min(P,
1

∥ab/q + θqm′ +O(q−1)∥
) =

∑
b (mod q)

min(P,
1

∥b/q +O(q−1)∥
).

Now we consider the two cases of b: When b ≪ 1, we take P as the minimum;
when b≫ 1, the denominator ∥b/q +O(q−1)∥ ≫ b/q. Therefore, we have∑

b (mod q)

min(P,
1

∥ab/q + θqm′ +O(q−1)∥
) ≪ P +

∑
1≤b≤q

q

b
≪ P + q log(q).

Since q ≤ P k, we have log(q) = Oε(P
ε/2). Introducing the sum over m′ and

noticing that the number of admissible m′ is O(1 + q−1P k−1), we have shown that∑
m≤k!Pk−1

min(P,
1

∥αm∥
) ≪ε (1 +

P k−1

q
)(P + qP ε/2) ≪ε P

k+ε/2(
1

q
+

1

P
+

q

P k
).
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Hence,

|Tk(f)|2
k−1

≪ε P
2k−1−1 + P 2k−1+ε(

1

q
+

1

P
+

q

P k
).

We are now complete with the proof.

After having shown the proof of Weyl’s inequality, we now turn to the second
important ingredient in the analysis of the exponential sums. The following is a
famous result of Hua:

Lemma 2.3 (Hua’s inequality). If

T (α) :=
P∑

x=1

e(αxk),

then for any fixed ε > 0, we have∫ 1

0

|T (α)|2
k

dα ≪ P 2k−k+ε.

Proof. Let

Iv :=

∫ 1

0

|T (α)|2
v

dα.

We wish to show that

Iv ≪ P 2v−v+ε for v = 1, . . . , k,

where the case v = k is the result claimed in the lemma.
We will proceed by induction on v: For v = 1, we can see that

I1 =

∫ 1

0

T (α) · T (−α) dα = P

by the character orthogonality (2.1).
Now, we suppose our claim holds for 1 ≤ v ≤ k − 1. As in the proof of Weyl’s

inequality, the differencing trick (2.3) gives

|T (α)|2
v

≪ P 2v−1 + P 2v−v−1ℜ

( ∑
1≤y1,...,yv≤P

Sk−v(α)

)
,

where
Sk−v(α) =

∑
x∈I(y1,...,yv)

e(α∆y1,...,yv(x
k)).
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If we multiply both sides of the inequality by |T (α)|2
v

and integrate from 0 to 1,
we get∫ 1

0

|T (α)|2
v+1

dα = Iv+1 ≪
∫ 1

0

|T (α)|2
v

·

(
P 2v−1 + P 2v−v−1ℜ

( ∑
1≤y1,...,yv≤P

Sk−v(α)

))

= P 2v−1Iv + P 2v−v−1
∑

1≤y1,...,yv≤P

ℜ
∫ 1

0

Sk−v(α) |T (α)|2
v

dα.

Now we consider the last integral from previous estimate:∫ 1

0

Sk−v(α) |T (α)|2
v

dα =

∫ 1

0

∑
x∈I(y1,...,yv)

e(α∆y1,...,yv(x
k))

∑
u1,...,u2v−1
v1,...,v2v−1

e(αuk1+· · · )e(−αvk1−· · · ) dα,

where ui and vi go from 1 to P .
We notice that this integral actually counts the number of solutions to the fol-

lowing equation:

N := #{∆y1,...,yv(x
k) + uk1 + · · · − vk1 − · · · = 0 : 1 ≤ x, yi, ui, vi ≤ P}.

By substitution, we get

Iv+1 ≪ P 2v−1Iv + P 2v−v−1N. (2.4)

What remains is that we need to give an estimate for counting N : We observe
that ∆y1,...,yv(x

k) is positive and divisible by each of y1, . . . , yv. By the bound for the
divisor function, if we fix every ui and every vi, we have at most P ε choices for each
1 ≤ y1, . . . , yv ≤ P . Given all yi, ui, and vi, we note that x is uniquely determined.
Thus, we have

N ≪ P 2v+vε.

Substituting in (2.4) and using the induction hypothesis, we have

Iv+1 ≪ P 2v−1P 2v−v+ε + P 2v−v−1P 2v+vε ≪ P 2v+1−(v+1)+vε.

Therefore we are complete with the proof.
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Chapter 3

The asymptotic formula

We now return to the starting point of our studies on Waring’s problem:

R(N) =

∫ 1

0

T (α)se(−Nα) dα, (3.1)

where

e(x) = exp(2πix), T (α) =
∑

1≤x≤P

e(αxk), and P =
⌈
N1/k

⌉
.

As mentioned in the Introduction, the general plan of attack in the application
of the circle method to Waring’s problem and relevant problems is to divide the
values of α into two sets: The major arcs, which contribute to the main term in the
asymptotic formula, and the minor arcs, which go into the error term. In general,
it is usually easier to work with the major arcs, and the crux of the problem lies in
the minor arcs.

First, we are going to define the major arcs: Around every rational a/q, for some
parameter δ > 0, we put an interval

Ma,q := {α ∈ [0, 1] :

∣∣∣∣α− a

q

∣∣∣∣ ≤ P−k+δ},

and we let
M :=

⋃
1≤q≤P δ

⋃
a (mod q)
gcd(a,q)=1

Ma,q.

We will show that these intervals do not overlap: Suppose there exists a common
point α ∈ Ma,q ∩Ma′,q′ for fractions a/q ̸= a′/q′. Then we would have the following

14



upper bound: ∣∣∣∣aq − a′

q′

∣∣∣∣ ≤ ∣∣∣∣α− a

q

∣∣∣∣+ ∣∣∣∣α− a′

q′

∣∣∣∣ ≤ 2P−k+δ

and its corresponding lower bound:∣∣∣∣aq − a′

q′

∣∣∣∣ = ∣∣∣∣aq′ − a′q

qq′

∣∣∣∣ ≥ ∣∣∣∣ 1qq′
∣∣∣∣ ≥ ∣∣∣∣ 1

P 2δ

∣∣∣∣ = P−2δ.

If we combine the two bounds, we obtain

1 ≤ 2P 3δ−k,

where cannot be achieved if δ < 1/3. The set M ⊂ [0, 1] is called the set of major
arcs for Waring’s problem, and we define m = [0, 1] \M to be the set of minor arcs.

We then can estimate the contribution from the minor arcs to R(N) as follows:

Lemma 3.1. If s ≥ 2k + 1, then we have∫
m

|T (α)|s dα ≪ P s−k−δ′ ,

where δ′ is a positive number dependent on δ.

Proof. By Dirichlet’s approximation theorem, every α ∈ [0, 1] has a rational approx-
imation a/q satisfying

1 ≤ q ≤ P k−δ, |α− a/q| ≤ q−1P−k+δ. (3.2)

We notice that if q ≤ P δ, then by definition, we have α ∈ Ma,q. It implies that
if α ∈ m, then

q > P δ. (3.3)

By the consequences of application of Dirichlet’s approximation theorem (3.2),
we have ∣∣∣∣α− a

q

∣∣∣∣ ≤ 1

q
· 1

P k−δ
≤ 1

q2
.

Then, we can apply Weyl’s inequality (Lemma 2.2): Since (3.3) implying q−1 <
P−δ and P k/q ≥ P δ, we have

|T (α)| ≪ P 1+δ

(
1

P
+

1

q
+

q

P k

) 1

2k−1

≪ P 1+ε−δ/2k−1

,
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Combining with Hua’s inequality (Lemma 2.3), we have∫
m

|T (α)|s dα =

∫
m

|T (α)|s−2k · |T (α)|2
k

dα

≪ P (s−2k)(1+ε−δ/2k−1)

∫ 1

0

|T (α)|2
k

dα

≪ P (s−2k)(1+ε−δ/2k−1)+2k−k+ε.

Now we recall the assumption s ≥ 2k+1 and calculate the terms in the exponent
explicitly:

(s− 2k)(1 + ε− δ

2k−1
) + 2k − k + ε = s− k + (s− 2k + 1)ε+ (2− s

2k−1
)δ

≤ s− k + (s− 2k + 1)ε− δ

2k−1

≤ s− k +
δ

2k
.

In the last step, we set ε := δ/(s− 2k + 1)2k. Setting δ′ := δ/2k in the following
inequality, we obtain ∫

m

|T (α)|s dα ≪ P s−k−δ′ ,

which completes the proof.

Note 3.2. As mentioned above, in general, the treatment of the minor arcs is the
challenging part of the circle method. Therefore, once one has found a solution to
deal with minor arcs, one usually would make the minor arcs as large as the method
permits. Then, one would hope that the rest can be attacked with the machinery of
the major arcs.

It remains to study the contribution from the major arcs: To achieve this goal,
we need to define the following:

Sa,q =
∑

1≤x≤q

e

(
axk

q

)
and I(β) =

∫ P

0

e(βtk) dt.

Our first job is to approximate T (α) with these two integrals:

Lemma 3.3. Let α ∈ Ma,q and β = α− a/q. We have

T (α) = q−1Sa,qI(β) +O(P 2δ). (3.4)
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Proof. We write 1 ≤ x ≤ P as x = qy + z, where 1 ≤ z ≤ q. We then have

T (α) =

q∑
z=1

∑
y

e(α(qy + z)k) =

q∑
z=1

e

(
azk

q

)
·
∑
y

e(β(qy + z)k).

Next, we want to write the y-sum as an integral, where we would pick up some
errors. We recall that for any differentiable function f , the mean-value theorem tells
us that

|f(x)− f(y)| ≤ 1

2
max |f ′(x)| for |x− y| ≤ 1

2
.

Then we would have∣∣∣∣∣
∫ B

A

f(x) dx−
∑

A<x<B

f(x)

∣∣∣∣∣≪ (B − A)max |f ′(x)|+max |f(x)|.

In our case, f(y) = e(β(qy + z)k) with |f(y)| ≤ 1. Now we need to compute the
derivate of f(y):

f ′(y) = 2πikqβ(qy + z)k−1f(y) ≪ q |β|P k−1.

Notice that we also have B − A≪ P/q, so we have

∑
y

e(β(qy + z)k) =

∫ B

A

e(β(qy + z)k) dy +O(|β|P k + 1)

= q−1

∫ P

0

e(βtk) dt+O(|β|P k + 1).

After plugging the y-sum into the right-hand side of first equation of the proof,
we get

T (α) = q−1Sa,qI(β) +O(q(|β|P k + 1)),

since we are only dealing with the major arcs, which means that we have q ≤ P δ and
|β| ≤ P−k+δ. Applying these two bounds in the error term completes the proof.

Now we are ready to calculate the contribution from the major arcs:

Lemma 3.4. Recall that M denotes the totality of the major arcs Ma,q. We have∫
M

T (α)se(−Nα) dα = P s−kS(P δ, N)J(P δ) +O(P s−k−δ′),
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for some δ′ > 0, where

S(P δ, N) =
∑
q≤P δ

∑
1≤a≤q

gcd(a,q)=1

(q−1Sa,q)
s · e

(
−N a

q

)
,

J(P δ) =

∫
|γ|<P δ

(∫ 1

0

e(γtk) dt

)s

e(−γ) dγ.

Proof. First we notice the following simple observation:∣∣q−1Sa,qI(β)
∣∣ ≤ P,

then by binomial expansion of (3.4), we have

T (α)s = (q−1Sa,q)
sI(β)s +O(P s−1+2δ).

Therefore, multiplying by e(−Na) and integrating over Ma,q, that is, over |β| <
P−k+δ, each arc yields∫
Ma,q

T (α)se(−Nα) dα =

∫
Ma,q

(
(q−1Sa,q)

sI(β)s +O(P s−1+2δ)
)
· e
(
−N(

a

q
+ β)

)
= (q−1Sa,q)

se(−N a

q
)

∫
|β|<P−k+δ

I(β)se(−Nβ) dβ +O(P s−k−1+3δ)

Now we collect all admissible a and q, we obtain∫
M

T (α)se(−Nα) dα = S(P δ, N)

∫
|β|<P−k+δ

I(β)se(−Nβ) dβ +O(P s−k−1+5δ),

where we trivially bound the number of tuples (a, q) by P 2δ. Similarly, it can also
be used to bound S(P δ, N) ≪ P 2δ.

Now, we only need to determine the β-integral: Recall P =
⌈
N1/k

⌉
, hence N −

P k ≪ P k−1. Again, by the mean-value theorem, we have∣∣e(−βN)− e(−βP k)
∣∣≪ |β|P k−1 ≪ P (−k+δ)+(k−1) ≪ P−1+δ.

It implies that we could replace N with P k and put the error in the error term:∫
M

T (α)se(−Nα) dα = S(P δ, N)

∫
|β|<P−k+δ

I(β)se(−P kβ) dβ +O(P s−k−1+5δ).
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If we look more closely at the β-integral, we obtain∫
|β|<P−k+δ

I(β)se(−P kβ) dβ =

∫
|β|<P−k+δ

(∫ P

0

e(βtk) dt

)s

e(−βP k) dβ.

If we put t = Pζ and β = P kγ in the above equation, we get∫
|β|<P−k+δ

I(β)se(−P kβ) dβ = P s−kJ(P δ).

This completes the proof.

Definition 3.5 (Singular series). The singular series for the problem of representing
N as a sum of s positive integral k-th power is

S(N) :=
∞∑
q=1

q∑
a=1

gcd(a,q)=1

(q−1Sa,q)
se

(
−N a

q

)
.

If s ≥ 2k + 1, the series is absolutely convergent, and uniformly with respect to
N . By Weyl’s inequality (Lemma 2.2), we have∣∣∣∣(q−1Sa,q)

se

(
−N a

q

)∣∣∣∣≪ q−
s

2k−1+ε ≪ q−2−2−k+1+ε. (3.5)

Later, we will prove that it is also true under the less restrictive condition that
s ≥ 2k + 1.

Theorem 3.6. If s ≥ 2k + 1, the number R(N) of representing N as a sum of s
positive integral k-th powers satisfies

R(N) = Ck,sN
s/k−1S(N) +O(N s/k−1−δ′), (3.6)

for some fixed δ′ > 0, where

Ck,s =
Γ(1 + 1/k)s

Γ(s/k)
.

Proof. By definition of R(N) of (2.2), Lemma 3.1 (minor arc contribution), and
Lemma 3.4 (major arc contribution), combining all our results so far, we obtain

R(N) =

∫
M

T (α)se(−Na) dα +

∫
m

T (α)se(−Na) dα

=
(
P s−k ·S(P δ, N)J(P δ) +O(P s−k−δ′)

)
+ P s−k−δ′

= P s−k ·S(P δ, N)J(P δ) +O(P s−k−δ′) (3.7)
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Once again, we can see that the most significant contribution comes from the
major arc, as mentioned above.

We will first investigate the contribution from J(P δ), whose definition we recall
in the following:

J(P δ) =

∫
|γ|<P δ

(∫ 1

0

e(γtk) dt

)s

e(−γ) dγ

We first observe that the inner integral can be expressed in the following three
ways, by changes of variables:∫ 1

0

e(γtk) dt = k−1

∫ 1

0

ζ−1+ 1
k e(γζ) dζ = k−1γ−

1
k

∫ 1

0

ζ−1+ 1
k e(ζ) dζ, (3.8)

where the first equality is obtained by setting ζ := tk and the second by ζ := γtk.
Since the integral in the last expression is bounded for all γ, by Dirichlet’s test

for infinite integrals with absolute convergence at 0, we obtain the estimate∣∣∣∣∫ 1

0

e(γtk) dt

∣∣∣∣≪ |γ|−
1
k .

It allows us to extend the γ-integral in J(P δ) to infinity:

J(P δ) = J +O(P−( s
k
−1)δ),

where (we choose the second expression in (3.8))

J =

∫ ∞

−∞

(
k−1

∫ 1

0

t−1+ 1
k e(γt) dt

)s

e(−γ) dγ.

We can see that J only depends on k and s, though in fact, J = Ck,s, which we
will prove later. We will call J the singular integral for Waring’s problem.

By the absolute convergence of the series S(N) and the fact that J(P δ) = J +
O(P−(s/k−1)δ), in (3.7), we can replace S(P δ, N) by S(N), J(P ) by J , and P by
N1/k, with permissible errors. As a result, we get (3.6) as in the theorem statement,
except for the proof of J = Ck,s. However, we are not too concerned with the exact
value of J , but only the fact that J > 0.

To actually evaluate J , we recall the following identity:∫ λ

−λ

e(µγ) dγ =
sin(2πγµ)

πµ
.
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We then can replace the infinite γ-integral in J with a suitable limit and inter-
changing integrals:

ksJ = lim
λ→∞

∫ 1

0

· · ·
∫ 1

0

(ζ1 · · · ζs)−1+ 1
k
sin(2πλ(ζ1 + · · ·+ ζs − 1))

π(ζ1 + · · ·+ ζs − 1)
dζ1 · · · dζs

= lim
λ→∞

∫ s

0

φ(u)
sin(2πλ(u− 1))

π(u− 1)
du,

where

φ(u) =

∫ 1

0

· · ·
∫ 1

0

(ζ1 · · · ζs−1 · (u− ζ1 − · · · − ζs−1))
−1+ 1

k dζ1 · · · dζs−1,

and is taken over ζ1, . . . , ζs−1 for which u − 1 < ζ1 + · · · + ζs−1 < u. We made the
change of variable from ζs to u, where ζ1 + · · ·+ ζs = u.

Note that φ(1) can be evaluated directly, for instance, by Dirichlet. We can also
see that it is an extension of Euler’s integral for the beta-function (i.e., B(p, q) =
Γ(p)Γ(q)/Γ(p+ q)). We then have

φ(1) =
Γ(1/k)s

Γ(s/k)
,

thus
J = k−sΓ(1/k)

s

Γ(s/k)
=

Γ(1 + 1/k)s

Γ(s/k)
.

A sufficient condition for applying Fourier’s integral theorem is that φ(u) should
be of bounded variation. To verify this, we put ζj = utj, then we have

φ(u) = us/k−1

∫ 1/u

0

· · ·
∫ 1/u

0

(t1 · · · ts−1 · (1− t1 − · · · − ts−1))
−1+1/k dt1 · · · dts−1,

where the integral is over t1, . . . , ts−1 for which 1− 1/u < t1 + · · · + ts−1 < 1. Since
the integrand is now independent of u and the range of integration contracts as u
increases, thus this completes the proof.

21



Chapter 4

The singular series

In this chapter, we will study the singular series

S(N) :=
∞∑
q=1

q∑
a=1

gcd(a,q)=1

(q−1Sa,q)
se

(
−N a

q

)
.

We will find that the value of S(N) is related to the number of solutions of the
congruences

xk1 + · · ·+ xks ≡ N (mod q),

for all possible integers q. If any such congruence is insoluble, then S(N) = 0.
We let

S(N) =
∞∑
q=1

A(q), where A(q) =

q∑
a=1

gcd(a,q)=1

(q−1Sa,q)
se

(
−N a

q

)
.

Lemma 4.1. If gcd(q1, q2) = 1, then

A(q1q2) = A(q1)A(q2).

Proof. We will start by writing

f(a, q) = Ss
a,qe

(
−N a

q

)
.

If we have

gcd(a1, q1) = gcd(a2, q2) = 1,
a

q
≡ a1
q1

+
a2
q2

(mod 1), and q = q1q2, (4.1)
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then
f(a, q) = f(a1, q1)f(a2, q2).

To see this, we first compute

a

q
qk
(
z1
q1

+
z2
q2

)k

≡ a

q
qk
(
z1q2 + z2q1

q1q2

)k

≡ a

q
(z1q2 + z2q1)

k

≡
(
a1
q1

+
a2
q2

)
(z1q2 + z2q1)

k

≡ a1
q1
(z1q2 + z2q1)

k +
a2
q2
(z1q2 + z2q1)

k

≡ a1
q1
(q2z1)

k +
a2
q2
(q1z2)

k (mod 1).

With this, we then can write

Sa,q =

q∑
z=1

e

(
a

q
zk
)

=

q1∑
z1=1

q2∑
z2=1

e

(
a

q
qk
(
z1
q1

+
z2
q2

)k
)

=

q1∑
z1=1

e

(
a1
q1
(q2z1)

k

)
·

q2∑
z2=1

e

(
a2
q2
(q1z2)

k

)
= Sa1,q1 · Sa2,q2 .

The last equality follows from changes of variables. We then notice that the
multiplicativity of f follows from the following identity:

e

(
−N a

q

)
= e

(
−N a1

q1

)
e

(
−N a2

q2

)
.

The statement of this lemma follows by observing

q∑
a=1

gcd(a,q)=1

f(a, q) =

 q1∑
a1=1

gcd(a1,q1)=1

f(a1, q1)


 q2∑

a2=1
gcd(a2,q2)=1

f(a2, q2)

 ,
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which we obtain from the three assumptions (4.1) in the beginning of this proof,
which sets a one-to-one correspondence between reduced residue classes a (mod q)
and pairs of reduced residue classes a1 (mod q1) and a2 (mod q2).

Lemma 4.2. If s ≥ 2k + 1, then we have

S(N) =
∏
p

χ(p),

where

χ(p) = 1 +
∞∑
v=1

A(pv).

Furthermore, we have
χ(p) = 1 +O(p−1−δ),

for some fixed δ > 0.

Proof. From previous lemma, we know that if

q = pv11 p
v2
2 p

v3
3 · · · ,

then
A(q) = A(pv11 )A(pv22 )A(pv33 ) · · · .

Thus we have

S(N) =
∞∑
q=1

A(q) =
∏
p

(
∞∑
v=0

A(pv)

)
=
∏
p

χ(p),

by the absolute convergence of S(N).
Recall the following estimate:

|A(q)| ≪ q1−s/2k−1+ε ≪ q−1−δ,

which implies that

|χ(p)− 1| ≪
∞∑
v=1

p−v(1+ε) ≪ p−1−δ,

by a standard geometric series argument.
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Corollary 4.3. If s ≥ 2k + 1, then there exists p0 = p0(k), such that

1

2
≤
∏
p>p0

χ(p) ≤ 3

2

We will see this also holds if s ≥ 2k + 1.

This result will be greatly improved by relating the numbers χ(p) to the number
of solutions to some congruence, thus we define

M(q) := #{0 < xi ≤ q : xk1 + · · ·+ xks ≡ N (mod q)}.

Lemma 4.4. We have

1 +
n∑

v=1

A(pv) =
M(pn)

pn(s−1)
,

and consequently

χ(p) = lim
n→∞

M(pn)

pn(s−1)
.

Proof. We notice that by the definition of M(q), we can express it in terms of expo-
nential sums as an arithmetic analogue of that used to express r(N) as an integral
in (2.2):

M(q) =
1

q

q∑
t=1

q∑
x1=1

· · ·
q∑

xs=1

e

(
t

q
(xk1 + · · ·+ xqs −N)

)
,

since the sum over t gives q if the congruence is satisfied, and 0 otherwise.
We then collect together those values of t that have the same highest common

factor with q. If this highest common factor is denoted by q/q1, then the values of t
in question are uq/q1, where 1 ≤ u ≤ q1 and gcd(u, q1) = 1. Therefore, by the above
reasoning, we obtain

M(q) =
1

q

∑
q1|q

q1∑
u=1

gcd(u,q1)=1

q∑
x1=1

· · ·
q∑

xs=1

e

(
u

q
(xk1 + · · ·+ xqs −N)

)
.

We notice
q∑

x=1

e

(
u

q1
xk
)

=
q

q1

q1∑
x=1

e

(
u

q1
xk
)

=
q

q1
Su,q1 .
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Then we would obtain the following

M(q) =
1

q

∑
q1|q

q1∑
u=1

gcd(u,q1)=1

(
q

q1

)s

Ss
u,q1

e

(
−uN
q1

)
= qs−1

∑
q1|q

A(q1).

We are complete by setting q = pn.

It remains to thoroughly investigate the congruence at hand:

Definition 4.5. For each prime p, let pτ be the highest power of p dividing k, and
put k = pτk0. Define γ by

γ =

{
τ + 1 if p > 2,

τ + 2 if p = 2.

Of course, γ depends on both p and k.

We will then need the following result to lift certain congruences, which is a
specific version of Hensel’s lemma:

Lemma 4.6. If the congruence yk ≡ m (mod pγ) is soluble where m ̸≡ 0 (mod p),
then the congruence xk ≡ (mod pv) is soluble for every v > γ.

Proof. We first begin by considering the case p > 2: The relatively prime residue
classes (mod pv) form a cyclic group of order φ(pv) = pv−1(p− 1). A generator g of
this group is called a primitive root to the modulus pv. If v > γ, then g is necessarily
also a primitive root to the modulus pγ.

We then write

m ≡ gµ, y ≡ gη, , x ≡ gξ (mod pv).

Then, we find that the hypothesis yk ≡ m (mod pγ) is equivalent to

kη ≡ µ (mod pγ−1(p− 1)).

Since k = pτk0 and τ = γ−1, it follows that µ is divisible by pγ−1 and gcd(k0, p−
1).

Now, we can find ξ to satisfy

kξ ≡ µ (mod pv−1(p− 1)),

since µ is divisible by the highest common factor of k and pv−1(p − 1). The last
congruence is equivalent to xk ≡ m (mod pv).
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Now, we consider the case when p = 2: Notice that if k is odd, that is, τ = 0,
then there would be no problem, as every odd m is a n-th power modulo 2v.

Then we suppose τ ≥ 1. Since k = 2τk0 is even, we have xk ≡ 1 (mod 4) for
all x. Further, 5 is a generating element or a primitive root for the cyclic group of
residue classes modulo 2v with ≡ 1 (mod 4) of order 2v−2. As before, we proceed as

m ≡ 5µ, y ≡ 5η, , x ≡ 5ξ (mod 2v).

Then the hypothesis is equivalent to

kη ≡ µ (mod 2γ−2).

Since k = 2τk0 and τ = γ−2, it follows that µ is divisible by 2τ . Therefore, there
exists ξ, such that

kη ≡ µ (mod 2v−2),

which implies that xk ≡ m (mod 2v).

Lemma 4.7. If the congruence

xk1 + · · ·+ xks ≡ N (mod pγ)

has a solution with x1, . . . , xs not all divisible by p, then χ(p) > 0.

Proof. We may suppose

ak1 + · · ·+ aks ≡ N (mod pγ) and p does not divide a1.

For v > γ: We choose x2, . . . , xs arbitrarily in p(v−γ)(k−1) ways, such that

xj ≡ aj (mod pγ), 0 < xj ≤ pv.

Then, by previous lemma, we can choose 0 < x1 ≤ pv, such that

xk1 ≡ N − xk2 − · · · − xks (mod pv).

Since we have that many choices for x2, . . . , xs, we have

M(pv) ≥ p(v−γ)(s−1) = Cpp
v(s−1),

where Cp = p−γ(s−1) > 0 and independent of v. We then can use this to obtain

χ(p) = lim
v→∞

M(pv)p−v(s−1) ≥ Cp > 0.
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Lemma 4.8. If s ≥ 2k for k odd or s ≥ 4k for k even, then χ(p) > 0 for all primes
p and all N .

Proof. By previous lemma, we only need to show the congruence

xk1 + · · ·+ xks ≡ N (mod pγ) (4.2)

is soluble with x1, . . . , xs not all divisible by p. If p does not divide N , then the latter
requirement is satisfied. If p divides N , then we only need to solve the congruence

xk1 + · · ·+ xks−1 + 1k ≡ N (mod pγ).

Thus we have reduced the problem to solve the congruence (4.2) for s ≥ 2k − 1 (k
odd) or s ≥ 4k − 1 (k even) when p does not divide N .

We start with the general case p > 2: We consider all N satisfying

0 < N < pγ and N ̸≡ 0 (mod p),

and there are φ(pγ) = pγ−1(p−1) of them. Let s(N) denote the least s for which the
congruence (4.2) is soluble. We observe that if N ≡ zkN ′ (mod pγ), then s(N) =
s(N ′). Therefore, if we partition the numbers N into classes according to the value
of s(N), then the number in each class is at least equal to the number of distinct
values assumed by zk when gcd(z, p) = 1. If we put z ≡ gζ (mod pγ), and a ≡ gα

(mod pγ), we can see that the congruence zk ≡ a (mod pγ) is soluble if and only if
α is divisible by pτδ, where δ = gcd(k, p − 1). Since τ = γ − 1, then the number of
distinct values for α (mod pγ−1(p−1)), which is also equal to the number of distinct
values for a (mod pγ), is

pγ−1(p− 1)

pγ−1δ
=
p− 1

δ
= r.

Therefore, each class of values of N includes at least r elements.
Now, we may enumerate first all N , for which s(N) = 1:

N
(1)
1 < N

(1)
2 < · · · < N (1)

r1
, where r1 ≥ r.

Then we may enumerate all N , for which s(N) = 2:

N
(2)
1 < N

(2)
2 < · · · < N (2)

r2
, where r2 ≥ r,

and so on. We will see that even if some of these sets may be empty, but two con-
secutive sets cannot be empty at the same time: Consider the least N ′ not divisible
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by p, which is not in any of the first j − 1 sets. Then, either N ′ − 1 or N ′ − 2 does
not divide p, and being less than N ′, it must be in one of the first j − 1 sets. We
may represent N ′ as

(N ′ − 1) + 1k and (N ′ − 2) + 1k + 1k,

and can deduce that s(N ′) ≤ j + 1. Hence the sets for which s(N) = j and s(N) =
j + 1 cannot both be empty.

Suppose the last set in this enumeration with s(N) = m. Then at least 1
2
(m− 1)

of the first m− 1 sets are not empty, and the m-th set is not empty, making at least
1
2
(m+ 1) non-empty sets.

Since each set contains at least r numbers, we have
1

2
r(m+ 1) ≤ φ(pγ) = pγ−1(p− 1).

We further observe

m+ 1 ≤ 2pγ−1(p− 1)

r
= 2pγ−1δ = 2pτ gcd(k0, p− 1) ≤ 2k.

So we obtain that m ≤ 2k − 1, whence s(N) ≤ 2k − 1, for all N . Therefore, for
p > 2, the congruence (4.2) is soluble for s ≥ 2k − 1.

In the case of p = 2: If τ = 0, or equivalently k is odd, then the congruence (4.2)
is soluble for p does not divide N when s = 1. This proves the conclusion of this
lemma, since then the only restriction on s comes from the primes p > 2.

Now we may suppose τ ≥ 1, so that k is even. Without loss of generality, we
may suppose that 0 < N < 2γ, since N is odd. If we take all the xi in (4.2) to be 0
or 1, then we can solve the congruence if s ≥ 2γ − 1. Now, we have

2γ − 1 = 2τ+2 − 1 ≤ 4k − 1.

Thus it suffices if s ≥ 4k− 1, and proves the conclusion of this lemma in the case
of k being even.

In the style of Hardy and Littlewood, we set Γ(k) to be the least value of s, such
that the congruence

xk1 + · · ·+ xks ≡ N (mod pγ)

is soluble with xi not all divisible by p, for all p and N . We have seen so far that

Γ(k) ≤

{
2k if k is odd,
4k if k is even.

Now, we are ready to prove the following important theorem:
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Theorem 4.9. If s ≥ 2k + 1, then

S(N) ≥ C1(k, s) > 0,

where C1(k, s) is some constant, for all N .

Proof. By Lemma 4.2, if s ≥ 2k + 1, then

S(N) =
∏
p

χ(p).

The assumption s ≥ 2k+1 implies the conditions of Lemma 4.8, hence in all cases,
each factor χ(p) is strictly positive. Corollary 4.3 implies that, under the condition
s ≥ 2k + 1, there exists some finite cut-off prime p0 = p0(k), such that

1

2
≤
∏
p>p0

χ(p) ≤ 3

2
.

Again, by Lemma 4.2,

S(N) =
∏
p

χ(p) =
∏
p≤p0

χ(p) ·
∏
p>p0

χ(p) ≥
∏
p≤p0

χ(p) · 1
2
> 0.

This theorem is a necessary supplement to Theorem 3.6, as it shows that the
main term in the asymptotic formula is ≫ N s/k−1, and thus, r(N) tends to infinity
as N tends to infinity.

Combining all these results, we obtain the following main theorem:

Theorem 4.10. Every sufficiently large number can be written as the sum of s
positive integral k-th powers for s ≥ 2k + 1.
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Chapter 5

The singular series continued

Note that we have only established absolute convergence for the singular series S(N)
when s ≥ 2k + 1, which we will improve to s ≥ 2k + 1 in this chapter.

Lemma 5.1. If p does not divide a and δ = gcd(k, p− 1), then

|Sa,p| ≤ (δ − 1)p
1
2

Proof. We first observe that xk ≡ m (mod p) and xδ ≡ m (mod p) have the same
number of solutions: Let g be a generator of the multiplicative group (Z/pZ)× of
order p−1, so every non-zero element modulo p can be written as gr for some integer
r.

Therefore, the equation
xk ≡ m (mod p)

can be written as
gks = gt =⇒ ks ≡ t (mod p− 1),

where we set x = gs and m = gt.
Similarly, the equation

xδ ≡ m (mod p)

would be
δs ≡ t (mod p− 1).

Because δ = gcd(k, p − 1), both congruences either have δ solutions in s or no
solutions at all. Hence, for each m = gt, the number of x solving xk ≡ m is the same
as the number of x solving xδ ≡ m.
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By the definition of Sa,q, we then have

Sa,p :=
∑

1≤x≤p

e

(
axk

p

)
=

∑
x (mod p)

e

(
axδ

p

)
.

Let χ be a primitive character modulo p of order δ. Then we observe

#{x (mod p) : xδ ≡ t (mod p)} = 1 + χ(t) + · · ·+ χδ−1(t),

which follows immediately from the orthogonality relations for Dirichlet characters.
With this at hand, we then can write

Sa,p =
∑

0≤n≤δ−1

∑
x (mod p)

χn(t)e

(
a

p
t

)
. (5.1)

If ψ is any non-principal character modulo p, then the sum

T (ψ) =
∑

t (mod p)

ψ(t)e

(
a

p
t

)
is called a Gauss sum. It is a classical result due to Gauss that |T (ψ)| = p1/2, which
we repeat here for completeness: We consider

|T (ψ)|2 =
∑
t

∑
u

ψ(t)ψ(u)e

(
a

p
(t− u)

)
=
∑
t

∑
u̸=0

ψ(t)e

(
a

p
u(t− 1)

)
.

We notice that the inner sum is p− 1 if t = 1 and −ψ(t) otherwise, hence

|T (ψ)|2 = pψ(1)−
∑
t

ψ(t) = p.

We are done after taking the square root and using this in (5.1) for ψ = χ, . . . , χδ−1.

Lemma 5.2. Suppose p does not divide a and p does not divide k. Then, for 1 <
v ≤ k, we have

Sa,pv = pv−1,

and for v > k, we have
Sa,pv = pk−1Sa,pv−k .
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Proof. By definition,

Sa,pv =

pv−1∑
x=0

e

(
a

pv
xk
)
.

If we put x = pv−1y + z, where 0 ≤ y < p and 0 ≤ z < pv−1, then

xk ≡ (pv−1y + z)k ≡ zk + kpv−1zk−1y (mod pv).

We then obtain

Sa,pv =

pv−1−1∑
z=0

p−1∑
y=0

e

(
azk

pv
+
akzk−1y

p

)
.

Note that by assumption p does not divide ak, and the inner sum is 0 unless p
divides z. Thus, we can write z = pw and get

Sa,pv = p

pv−2−1∑
w=0

e

(
awk

pv−k

)
.

We notice that if v ≤ k, then we are just summing up ones and would get
Sa,pv = pv−1. If v > k, we observe that we are summing up a function of period pv−k,
so we have

Sa,pv = ppk−2Sa,pv−k .

We are now done.

Lemma 5.3. The second result of Lemma 5.2 holds as well when p | k, that is,

Sa,pv = pk−1Sa,pv−k .

Proof. As before, we put k = pτk0, and note since v > k, we have

v > k = pτk0 ≥ 2τ ≥ τ + 1,

thus v ≥ τ + 2. Also, we have k ≥ τ + 2, since k ≥ 6 if τ = 1.
We then follow the idea of previous proof with minor modifications: We write

x = pv−τ−1y + z for 0 ≤ y < pτ+1 and 0 ≤ z < pv−τ−1.

We wish to prove, and assume for now, we have

xk ≡ zk + kpv−τ−1zk−1y (mod p). (5.2)
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Then the proof can be completed in a similar fashion as before: We have

Sa,pv =

pv−τ−1−1∑
z=0

pτ+1−1∑
y=0

e

(
azk

pv
− ak0z

k−1y

p

)
.

Note that once again the inner sum vanishes unless p divides z, thus

Sa,pv = pτ+1

pv−τ−2−1∑
w=0

e

(
awk

pv−k

)
= pτ+1pk−τ−2 · Sa,pv−k ,

which proves the theorem.
It remains to prove the congruence (5.2): It suffices to show that

(pv−τ−1y + z)p
τ ≡ zp

τ

+ pv−1zp
τ−1y (mod pv),

as raising both sides to the power k0 presents no difficulty. If we put λ := v − τ − 1,
then we need to prove

(pλy + z)p
τ ≡ zp

τ

+ pλ+τzp
τ−1y (mod pλ+τ+1).

Since not all the binomial coefficients in the expansion of (A+B)p
τ are divisible

by pτ , we need to continue by induction on τ .
The starting point is τ = 1: In this case, we have λ ≥ 1 (if p > 2) and λ ≥ 2 (if

p = 2). We only need to examine the last term in the binomial expansion, which is
pλpyp. For this we need to show that λp ≥ λ+2, which is true under the hypothesis.

We continue the induction step: For y1 ≡ y (mod p), we have

(z + pλy)p
τ

= (zp
τ−1

+ pλ+τ−1zp
τ−1−1y1)

p

≡ zp
τ

+ pλ+τzp
τ−1y1 (mod pλ+τ+1)

≡ zp
τ

+ pλ+τzp
τ−1y (mod pλ+τ+1).

This holds true by assumptions on λ and we are done.

Lemma 5.4. For gcd(a, q) = 1, we have

|Sa,q| ≪ q1−
1
k .

Proof. We write
T (a, q) = q−1+a/kSa,q.
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We now wish to prove that T (a, q) is bounded independently of q. If q =
pv11 p

v2
2 · · · , then by the multiplicativity established earlier, we have

T (a, q) = T (a1, p
v1
1 )T (a2, p

v2
2 ) · · · ,

for suitable a1, a2, . . ., each of which is relatively prime to each corresponding pv. By
previous two lemmas, we have

T (a, pv) = T (a, pv−k),

for v > k. Applying this repeatedly allows us to assume that vi ≤ k.
By Lemma 5.1, we have

T (a, p) ≤ kp1/2p−(1−1/k) ≤ kp−1/6,

and by the first part of Lemma 5.2, we have

T (a, pv) = pv−1p−v(1−1/k) ≤ 1 for a < v ≤ k.

Thus, T (a, pv) ≤ 1 except when v = 1 and p ≤ k6. Therefore, we have

T (a, q) ≤
∏
p≤k6

(kp−1/6),

and the number on the right is independent of q.

Theorem 5.5. The singular series S(N) and the product
∏

p χ(P ) are absolutely
convergent if s ≥ 2k + 1, and we have

S(N) ≥ C1(k, s) > 0,

where C1(k, s) is some constant, if s ≥ 2k + 1 for k odd or s ≥ 4k for k even.

Proof. The absolute convergence of the singular series S(N) follows as before in
(3.5): If s ≥ 2k + 1, then by Lemma 5.4, we have∣∣∣∣(q−1 · Sa,q

)s
e

(
−N a

q

)∣∣∣∣ ≤ ∣∣(q−1 · Sa,q

)s∣∣≪ q−
s
k ≪ q−2− 1

k .

The rest follows in a similar fashion as in the proof of Theorem (4.9).
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Chapter 6

Conclusion

In this thesis, we have conducted an in-depth study of the application of the circle
method to Waring’s problem, achieving both a re-derivation of classical results and
a deeper understanding of the underlying analytic machinery.

First, we established the key exponential sum estimates — Weyl’s inequality
(Lemma 2.2) and Hua’s inequality (Lemma 2.3) — which are instrumental in han-
dling the “minor arc” contributions. These inequalities provided rigorous upper
bounds on exponential sums of k-th powers, ensuring that the total contribution
of the minor arcs in our singular integral is o(1) relative to the main term. Next,
using a major/minor arc decomposition of the integral that counts representations
of N as xk1 + · · · + xks , we derived the asymptotic formula for the number of such
representations R(k)

s (N) when the number of variables is s ≥ 2k + 1. In particular,
we showed that for s above this threshold, the formula takes the shape

R(k)
s (N) ∼ Ck,sN

s/k−1S(N),

where Ck,s is an explicit constant (coming from the gamma-function and volume of
the solution set on the major arcs) and S(N) is the singular series. We verified that
under the same condition (s ≥ 2k+1), the singular series S(N) converges absolutely
and satisfies S(N) ≥ γ > 0 for some fixed γ independent of N . This non-vanishing
of S(N) is crucial, as it confirms that the main term in the asymptotic formula is
asymptotically bounded away from zero.

One of the key findings of this thesis is a self-contained proof that G(k) ≤ 2k +1
for all k (recovering Hua’s classical result in a modern presentation). We also ex-
amined the nature of the singular series in detail, showing how it factorizes into
p-adic densities and how mild growth conditions ensure its convergence. In doing so,
we addressed subtleties of interchanging summations and integrating term-by-term,
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thereby firming up the rigour behind the heuristic major/minor arc arguments. Over-
all, the thesis reinforced how the circle method successfully yields not just qualitative
solutions but also quantitative and asymptotic information about the distribution of
such representations.

6.1 Broader Implications
Beyond the specific proofs, the broader implications of these findings resonate with
several central themes in analytic number theory. The work illustrates the efficacy
of the circle method as a bridge between additive combinatorics and analysis: the
ability to convert an additive problem into an integral and exponential sum problem
is what allows us to bring powerful analytic tools to bear. The success of the method
in deriving an asymptotic formula for Waring’s problem solidifies the circle method’s
reputation as a cornerstone technique in the field.

Many other problems in analytic number theory share a similar outline: One seeks
to show that a certain generating function’s coefficients have the expected size, often
by locating the dominant contributions from certain “major” regions of integration
and controlling the rest. The present work on sums of k-th powers is a paradigmatic
example of this approach.

Moreover, the role of the singular series S(N) highlights a unifying principle: To
solve a global problem (like representing all large N), one must account for local
obstructions and densities at every prime. The fact that S(N) is positive in our
case means there are no local obstructions, and this principle carries over to other
additive problems – whenever a singular series (or analogous product of local factors)
vanishes, it signals a deeper obstruction that no analytic method can overcome. In
Waring’s problem, our confirmation that S(N) stays bounded away from zero for
s ≥ 2k + 1 is thus a confirmation that the only hurdle to expressing large N in the
desired form was an analytic one (overcome by our estimates), not a fundamental
arithmetic obstruction.

6.2 Future Directions
While this thesis has resolved the targeted questions and reproduced a landmark
result, it also opens the door to several future directions and unresolved problems:

• Tightening the Bound on G(k): There is considerable interest in further
reducing the number of summands required in Waring’s problem. The best
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known bound for large k is G(k) ≤ k(log k+ log log k+O(1)), but proving the
conjectural bound G(k) = k + 1 remains open.

• Waring’s Problem for Small k and Exact Values: For small k, exact
values of g(k) and G(k) remain difficult to determine, as the circle method
gives only asymptotic for large N . Future research can refine error bounds or
combine analytic methods with computational verification.

• Refinements of the Circle Method: New developments in harmonic anal-
ysis (such as Wooley’s efficient congruence and decoupling techniques) offer
avenues to further refine minor arc estimates and singular series evaluations.

• Applications to Other Additive Problems: The circle method has been
applied to problems like Goldbach’s conjecture and sums of polygonal numbers.
Future research can explore its adaptation to other additive questions involving
prime variables or mixed power sums.

In conclusion, this thesis has reaffirmed the power of the circle method by con-
cretely demonstrating its use on Waring’s problem, and it has highlighted how each
piece of the method contributes to the final result. The key findings provide a solid
foundation and reference point for anyone looking to enter this area of research. At
the same time, the discussion of open problems and future directions shows that
there is ample room to push these ideas further. The circle method, deeply rooted
in the work of Hardy, Littlewood, and their successors, remains very much alive.
Continued research in this area promises not only to inch closer to the ultimate
resolution of Waring’s problem (in its various forms) but also to enrich the toolkit
of analytic number theory, enabling us to tackle a wider array of problems about
expressing numbers as sums of structured sets of terms. The ongoing developments
stand as a testament to the enduring legacy and adaptability of the circle method in
the pursuit of understanding additive properties of integers.
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