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1 History

In 1927, van der Waerden published the celebrated theorem, which states that if the positive integers
are partitioned into finitely many classes, then at least one of these classes contains arbitrarily long
arithmetic progressions (AP), or formally:

Theorem 1.1 (van der Waerden, 1927). For any positive integers r and k, an integer N exists
such that, if the integers in the set [N ] = {1, 2, . . . , N} are each colored with one of r distinct colors,
then there will be at least k integers forming an AP where all elements share the same color.

It is considered as one of the fundamental results of Ramsey theory. A strengthening of this
theorem was conjectured by Erdős and Turán. Before stating the conjecture, we need the following
notion:

Definition 1.2 (Positive upper density). A subset A of N is said to have positive upper density if

lim sup
n→∞

|A ∩ [N ]|
N

> 0.
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Conjecture 1.3 (Erdős–Turán, 1936). Every set of integers with positive upper density contains
a k-term AP, for every positive integer k.

The cases k = 1 and k = 2 are trivial to prove. The case k = 3, known as Roth’s theorem, was
proved by Klaus Roth [Rot53] in 1953 with Fourier analysis, which will be the focus of this talk.
The case k = 4 was proved by Szemerédi [Sze69] in 1969. Roth [Rot72] gave a second proof in 1972.

The general case was completely settled in 1975 by Szemerédi:

Theorem 1.4 (Szemerédi, 1975 [Sze75]). Any subset of N with positive upper density contains
infinitely many k-term APs.

Remark 1.5. The original proof was very combinatorial, called “a masterpiece of combinatorial
reasoning” by Erdős.

Many other proofs now exist. The second proof (considered by many to be “the most impor-
tant”) was given by Furstenberg [Fur77; FKO82] in 1977, with ergodic theory. In 2001, William
Timothy Gowers “invented” higher-order Fourier analysis [Gow01] to prove the theorem, for which
(along with other work on functional analysis) he was awarded the Fields Medal in 2002.

Terence Tao called the various proofs of Szemerédi’s theorem a “Rosetta stone” for connecting
many fields of mathematics.

One of the most exciting developments in additive combinatorics at the beginning of this century
is the following celebrated theorem proved by Ben Green and Terence Tao:

Theorem 1.6 (Green–Tao, 2004 [GT08]). The prime numbers contain arbitrarily long arithmetic
progressions.

Remark 1.7. This result is not implied by Szemerédi’s theorem since the primes are of density 0 in
the natural numbers. Green and Tao introduced a “relative” version of Szemerédi’s theorem which
applies to some subsets of the integers that satisfy certain pseudo-randomness conditions.

Interested readers are referred to the excellent exposition [CFZ14] for a proof of the Green–Tao
theorem, written by David Conlon, Jacob Fox, and Yufei Zhao.

Before closing this section, we mention the following well-known Erdős–Turán conjecture. If
true, it would imply both Szemerédi’s and Green–Tao theorems:

Conjecture 1.8 (Erdős–Turán, $5000). If the sum of reciprocals of a set of integers diverges, then
that set contains arbitrarily long arithmetic progressions.

2 Bounds of Roth’s theorem

The infinite version of Roth’s theorem is often stated as the following:

Theorem 2.1 (Roth, 1953). A subset of N with positive upper density contains a 3-term AP.

However, often people are more interested in the quantitative version: We say that A is 3-AP-free
if there are no x, x+ y, x+ 2y ∈ A, with y ̸= 0. A 3-AP is trivial if y = 0.

We can retrieve the infinite version from the finite version if we let N tend to infinity, A becomes
negligible compared to N , implying that the density of A approaches zero.

Theorem 2.2 (Roth). Let A ⊆ [N ] be 3-AP-free. Then |A| = o(N).
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Improving upper and lower bounds on |A| is a very much active research problem. We state the
important progress below:

The original bound given in Roth’s proof:

|A| = O

(
N

log logN

)
Over the years, this bound has been continually lowered by Szemerédi, Heath-Brown, Bourgain,

and Sanders. The previous best bound “breaking the logarithmic barrier” was due to Bloom and
Sisask [BS20], who showed the existence of a constant c > 0, such that

|A| ≤ N

(logN)1+c
.

In February 2023, Kelley and Meka [KM23] gave the following remarkable result:

|A| ≤ N

2O((logN)c)

Four days later, Bloom and Sisask [BS23b] simplified the result with a little improvement to
|A| ≤ N/ exp

(
O((logN)1/11)

)
. Several months later, Bloom and Sisask [BS23a] obtained a further

improvement to |A| ≤ N/ exp
(
O((logN)1/9)

)
, and stated (without proof) that their techniques can

be used to show |A| ≤ N/ exp
(
O((logN)5/41)

)
.

There has also been work on the other direction: Constructing the largest set with no 3-AP.
However, the best construction has barely seen improvement since 1946, when Behrend [Beh46]
improved on the initial construction by Salem and Spencer and showed

|A| ≥ N

exp
(
O(

√
logN)

) .
Due to lack of improvements in over 70 years, it is conjectured that Behrend’s construction is

asymptotically close to the best [BS20]. If correct, the Kelley–Meka bound will prove this conjecture.

3 Fourier analysis in the integers

In this section, we will introduce Fourier analysis in the integers, which is a crucial tool in the proof
of Roth’s theorem (also known as the Hardy–Littlewood circle method in this context). It allows
us to detect non-randomness in the distribution of integers by examining the magnitude of Fourier
coefficients.

Before going into the proof, we will review some basic notions of Fourier analysis on the integers.
We will denote by R/Z the set of real numbers mod 1, and assume the Lebesgue measure.

Definition 3.1 (Fourier transform in Z). Given a finitely supported function f : Z → C, define
f̂ : R/Z → C by setting, for all θ ∈ R,

f̂(θ) =
∑
x∈Z

f(x)e(−xθ),

where e(t) = exp(2πit), for t ∈ R.
Note: f̂(θ) = f̂(θ + n), for all n ∈ Z.

3



Theorem 3.2 (Fourier inversion formula). Given finitely supported f : Z → C, for all x ∈ Z,

f(x) =

∫ 1

0

f̂(θ)e(xθ) dθ

Theorem 3.3 (Parseval). Given finitely supported f, g : Z → C,

∑
x∈Z

f(x)g(x) =

∫ 1

0

f̂(θ)ĝ(θ) dθ

In particular, when f = g, we have

∑
x∈Z

|f(x)|2 =

∫ 1

0

∣∣∣f̂(θ)∣∣∣2 dθ

Definition 3.4 (Convolution). Given finitely supported f : Z → C, define f ∗ g : Z → C by

(f ∗ g)(x) =
∑
y∈Z

f(y)g(x− y).

Theorem 3.5 (Convolution identity). Let functions f and g defined as before. For all x ∈ R/Z,

f̂ ∗ g(x) = f̂(x) ĝ(x).

Remark 3.6. Interested readers are encouraged to watch the excellent videos on Fourier transform
1 and convolution 2 produced by 3Blue1Brown.

Given finitely supported f, g, h : Z → C, define

Λ(f, g, h) =
∑
x,y∈Z

f(x)g(x+ y)h(x+ 2y)

Λ3(f) = Λ(f, f, f)

Then for any finite set A of integers,

Λ3(A) = Λ3(1A) = |{(x, y) : x, x+ y, x+ 2y ∈ A}|

counts the number of 3-APs in A, where each non-trivial 3-AP is counted twice, and each trivial
3-AP is counted once.

Theorem 3.7 (Fourier and 3-AP). Given finitely supported f, g, h : Z → C,

Λ(f, g, h) =

∫ 1

0

f̂(θ)ĝ(−2θ)ĥ(θ) dθ

1https://www.youtube.com/watch?v=spUNpyF58BY
2https://www.youtube.com/watch?v=KuXjwB4LzSA
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Proof. We will start by expanding the right-hand side:

∫ 1

0

f̂(θ)ĝ(−2θ)ĥ(θ) dθ =

∫ 1

0

(∑
x∈Z

f(x)e(−xθ)

)∑
y∈Z

g(y)e(2yθ)

(∑
z∈Z

h(z)e(−zθ)

)
dθ

=
∑

x,y,z∈Z
f(x)g(y)h(z)

∫ 1

0

e((−x+ 2y − z)θ) dθ

We notice that the integral only evaluates to 1 when −x+2y−z = 0, and 0 otherwise. Therefore,∫ 1

0

f̂(θ)ĝ(−2θ)ĥ(θ) dθ =
∑

x,y,z∈Z
x+z=2y

f(x)g(y)h(z)

=
∑
x,y∈Z

f(x)g(x+ y)h(x+ 2y)

= Λ(f, g, h).

We obtain the second equality by the substitution y 7→ x+ y.

4 Proof of Roth’s theorem

There are essentially two ways to prove Roth’s theorem: Roth originally used Fourier analysis to
prove the theorem, and subsequent improvements on the bounds rely on this approach as well. The
second “much simpler” approach needs Szemerédi’s regularity lemma (provided that you understand
the regularity lemma and its derived triangle counting lemma). However, it only gives a very
weak bound o(N) (compared to Roth’s O(N/ log logN)). This proof will not be covered here,
but interested readers are invited to read Yufei Zhao’s excellent “Graph Theory and Additive
Combinatorics” [Zha23].

Before going into the proof, we will introduce some notations:

∥∥∥f̂∥∥∥
∞

= sup
θ

∣∣∣f̂(θ)∣∣∣ and ∥f∥2 =

(∑
x∈Z

|f(x)|2
)1/2

The following proposition says that if f and g are “Fourier-close”, then they should have similar
3-AP counts:

Proposition 4.1 (3-AP counting lemma). Let f, g : Z → C be finitely supported functions. Then

|Λ3(f)− Λ3(g)| ≤ 3
∥∥∥f̂ − g

∥∥∥
∞

max {∥f∥22, ∥g∥
2
2}.

Proof. We notice

Λ3(f)− Λ3(g) = Λ(f − g, f, f) + Λ(g, f − g, f) + Λ(g, g, f − g).

5



We then can bound the first term in the following way:

|Λ(f − g, f, f)| =
∣∣∣∣∫ 1

0

̂(f − g)(θ)f̂(−2θ)f̂(θ) dθ

∣∣∣∣
≤
∥∥∥f̂ − g

∥∥∥
∞

∣∣∣f̂(−2θ)f̂(θ) dθ
∣∣∣

≤
∥∥∥f̂ − g

∥∥∥
∞

(∫ 1

0

∣∣∣f̂(−2θ)dθ
∣∣∣2)1/2(∫ 1

0

∣∣∣f̂(θ)∣∣∣2dθ)1/2

≤
∥∥∥f̂ − g

∥∥∥
∞
∥f∥22.

The first inequality is obtained by the triangle inequality, the second by Cauchy-Schwarz, and the
third by Parseval.

We can bound the second and third terms in a similar way. Therefore,

|Λ3(g, f − g, f)| ≤
∥∥∥f̂ − g

∥∥∥
∞
∥f∥2∥g∥2

|Λ3(g, g, f − g)| ≤
∥∥∥f̂ − g

∥∥∥
∞
∥g∥22.

Combining the three terms, we obtain the desired inequality.

We recall that we will be proving the following version of Roth’s theorem:

Theorem 4.2 (Roth). Every 3-AP-free subset of [N ] has size O(N/ log logN).

Let A be a 3-AP-free subset of [N ]. The proof will proceed in three steps:

1. Show that A admits a large Fourier coefficient.

2. Show that a large Fourier coefficient implies density increment on a sub-AP.

3. Iterate the density increment.

By “density increment” on a sub-AP, we refer to the method that if A does not have a 3-AP,
then we can find a subset of A with a higher density.

4.1 Step 1: A 3-AP-free set has a large Fourier coefficient

Lemma 4.3 (3-AP-free implies a large Fourier coefficient). Let A ⊆ [N ] be a 3-AP-free set with
density α = |A|/N . If N ≥ 5α−2, then there exists θ ∈ R/Z, satisfying∣∣∣∣∣

N∑
x=1

(1A − α)(x) e(xθ)

∣∣∣∣∣ ≥ α2

10
N.

Proof. Since A is 3-AP-free, we have

Λ3(1A) = |A| = αN

due to the fact that Λ3(1A) only counts the trivial 3-APs.
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On the other hand, in [N ] we can count 3-APs by only considering pairs of integers with same
parity to form first and thid elements of the 3-AP:

Λ3(1N ) ≥ N2

2

Now we apply the counting lemma (Proposition 4.1) with f = 1A and g = α1N : First, we have

∥1A∥22 = |A| = αN and
∥∥α1[N ]

∥∥2
2
= α2N

So we obtain

α3N2

2
− αN ≤ α3Λ3(1[N ])− Λ3(1A) =

∣∣Λ3(1A)− Λ3(α1[N ])
∣∣ ≤ 3

∥∥∥(1A − α1[N ])̂
∥∥∥
∞

· αN

We now consider the first and last terms in the inequality:∥∥∥(1A − α1[N ])̂
∥∥∥
∞

≥
α3N2

2 − αN

3αN
=

1

6
α2N − 1

3
≥ 1

10
α2N

where the last inequality follows from the assumption N ≥ 5α−2.
The L∞ norm being large implies the existence of a large Fourier coefficient, therefore, there

exists some θ ∈ R/Z with∣∣∣∣∣
N∑

x=1

(1A − α)(x) · e(θx)

∣∣∣∣∣ = (1A − α1[N ])̂(θ) ≥
1

10
α2N.

4.2 Step 2: A large Fourier coefficient implies density increment on a
sub-AP

Lemma 4.4 (Dirichlet’s lemma). We let ∥θ∥R/Z be the distance from θ to the nearest integer.

Let θ ∈ R and 0 < δ < 1. Then there exists a positive integer d ≤ 1/δ, such that ∥dθ∥R/Z ≤ δ.

Proof. Let N = ⌈1/δ⌉. Consider the sequence of fractional parts {θ}, {2θ}, . . . , {Nθ}, where {x}
denotes the fractional part of x. The unit interval [0, 1) is partitioned into N sub-intervals of equal
length 1/N .

By the pigeonhole principle, since we have N + 1 fractional parts (including 0) and only N
sub-intervals, there must be at least one sub-interval that contains at least two of these fractional
parts. Let {mθ} and {nθ} be two such fractional parts that lie within the same sub-interval, where
m and n are distinct integers, such that 1 ≤ m,n ≤ N , and without loss of generality, assume
m > n.

The distance between {mθ} and {nθ} is at most 1/N . The fractional part of their difference
{(m − n)θ} measures the distance of the multiple (m − n)θ from the nearest integer, which is
∥(m− n)θ∥Z.

Setting d = m − n, we have 1 ≤ d ≤ N because both m and n are within the range from 1 to
N , and their difference is non-negative and at most N . Moreover, ∥dθ∥Z ≤ 1/N ≤ δ, fulfilling the
conditions of the lemma.
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Lemma 4.5 (Partition into progression level sets). Let 0 < ε < 1 and δ ∈ R. Suppose N ≥ (4π/ε)6,
then one can partition [N ] into sub-AP Pi, each with length

N1/3 ≤ |Pi| ≤ 2N1/3,

such that for each i,
sup

x,y∈Pi

|e(xθ)− e(yθ)| < ε.

Proof. By the Dirichlet’s lemma, there is a positive integer d <
√
N , such that ∥dθ∥R/Z ≤ 1/

√
N .

We then partition [N ] greedily into sub-AP Pi, with common difference d, of length between N1/3

and 2N1/3.
For two any two elements x, y within the same Pi, we have

|e(xθ)− e(yθ)| ≤ |Pi||e(dθ)− 1| ≤ 2N1/3 · 2π ·N−1/2 ≤ ε

the second inequality follows from the fact that the length of a chord on a circle is at most the
length of the corresponding arc.

Lemma 4.6 (3-AP-free implies density increment). Let A ⊂ [N ] be 3-AP-free, with density α =
|A|/N and N ≥ (16/α)12. Then there exists a sub-AP P ⊂ [N ] with |P | ≥ N1/3 and |A ∩ P |/|P | ≥
α+ α2/40.

Proof. By Lemma 4.3, there exists θ ∈ R/Z satisfying∣∣∣∣∣
N∑

x=1

(1A − α)(x) · e(xθ)

∣∣∣∣∣ ≥ α2

10
N.

Next, apply Lemma 4.5 with ε = α2/20 to obtain a partition P1, . . . , Pk of [N ] satisfying
N1/3 ≤ |Pi| ≤ 2N1/3 and

|e(xθ)− e(yθ)| ≤ α2

20
for all i and x, y ∈ Pi.

So on each Pi, by the triangle inequality and Lemma 4.3, we have∣∣∣∣∣∑
x∈Pi

(1A − α)(x) · e(xθ)

∣∣∣∣∣ ≤
∣∣∣∣∣∑
x∈Pi

(1A − α)(x)

∣∣∣∣∣+ α2

20
|Pi|

Thus,

α2

10
≤

∣∣∣∣∣
N∑

x=1

(1A − α)(x)e(xθ)

∣∣∣∣∣
≤

k∑
i=1

∣∣∣∣∣∑
x∈Pi

(1A − α)(x)e(xθ)

∣∣∣∣∣
≤

k∑
i=1

(∣∣∣∣∣∑
x∈Pi

(1A − α)(x)

∣∣∣∣∣+ α2

20
|Pi|

)

=

k∑
i=1

∣∣∣∣∣∑
x∈Pi

(1A − α)(x)

∣∣∣∣∣+ α2

20
N
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By combining the first and the last terms in the inequality, we obtain

α2

20
N ≤

k∑
i=1

∣∣∣∣∣∑
x∈Pi

(1A − α)(x)

∣∣∣∣∣
and thus

α2

20

k∑
i=1

|Pi| ≤
k∑

i=1

||A ∩ Pi| − α|Pi||.

Next, we want to show that there exists some Pi, such that A has a density increment when
restricted to Pi. We notice the following trick:

α2

20

k∑
i=1

|Pi| ≤
k∑

i=1

||A ∩ Pi| − α|Pi||

=

k∑
i=1

||A ∩ Pi| − α|Pi||+ (|A ∩ Pi| − α|Pi|).

as the newly added terms in the final step sum to zero.
Therefore, there exists some i such that

α2

20
|Pi| ≤ ||A ∩ Pi| − α|Pi||+ (|A ∩ Pi| − α|Pi|)

Further, we notice that |t|+ t is 2t for t > 0, and 0 otherwise, so we obtain

α2

20
|Pi| ≤ 2(|A ∩ Pi| − α|Pi|),

which implies

|A ∩ Pi| ≥ (α+
α2

40
)|Pi|.

By translation and re-scaling, we can identify P with [N ′] with N ′ = |P |. Then A∩P becomes
a subset A′ ⊆ [N ′]. Since A′ is 3-AP-free, we now may iterate this argument.

4.3 Step 3: Iterate the density increment

We now iterate the second step. Let αt be the density of A after the t-th iteration, and Nt the size
of our current progression after t iterations. We start with α0 = α and N0 = N . After i iterations,
we arrive at a sub-AP of length Ni, where A has density αi. As long as N ≥ (16/αi)

12, we can
apply Lemma 4.6 to pass down to a sub-AP with

Ni+1 ≥ N
1/3
i and αi+1 ≥ αi +

α2
i

40
.

Notice that we double αi from α0 after ≤ ⌈40/α⌉ iterations. Once the density reaches ≥ 2α,
the next doubling takes ≤ ⌈20/α⌉ iterations, and so on. In general, the k-th doubling requires
≤ ⌈40 · 2−k/α⌉ iterations. Since density is at most 1, there are at most log2(1/α) doublings.
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Summing up everything, the total number of iterations is

m ≤
log2(1/α)∑

i=1

⌈40 · 2−k/α⌉ = O(1/α).

When the process terminates, by Lemma 4.6,

N1/3m ≤ Nm < (16/αi)
12 ≤ (16/α)12.

Rearranging gives
N ≤ (16/α)12·3

m

≤ (16/α)exp(O(1/α)).

Therefore,
|A|
N

= α = O

(
1

log logN

)
.

This completes the proof of Roth’s theorem.

5 Roth’s theorem in finite fields: The cap-set problem

An interesting variation is Roth’s theorem in finite fields: A 3-AP-free subset A of (Z/3Z)n is called
a cap set (named after the card game “SET”). The cap-set problem asks to determine the size of
the largest cap set in Fn

3 .
In 1982, Brown and Buhler [BB82] were the first to show that |A| = o(3n). In 1995, Mesuhlam

[Mes95] show that |A| = O(3n/n) with Fourier analysis. The bound was improved to |A| =
O(3n/n1+ε) by Bateman and Katz [BK12] in 2012.

In 2017, Croot, Lev, and Pach [CLP17] achieved a breakthrough result by applying the polyno-
mial method to Roth-type problems in the finite field model. Less than two weeks after their paper
was made public, Ellenberg and Gijswijt [EG17] adapted their argument to prove the current best
bound:

|A| = O(2.756n).

It is interesting to note that both papers were published in the Annals and were surprisingly
short – just 6 and 4 pages long, respectively.

The best lower bound is 2.2202n [Rom+24], obtained by a group of Google DeepMind researchers
with a large language model (LLM) in 2023.
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